
Thermodynamic instability of a confined gas

Harald A. Posch*
Institut für Experimentalphysik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

Walter Thirring†

Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria
�Received 17 July 2006; published 2 November 2006�

The best possible cooling agent is a system with negative specific heat. If in thermal contact with a second
system, any acquisition of energy due to a random fluctuation lowers its temperature, and the energy transfer
in this direction is further enhanced. It continues until all the energy is extracted from the second system and
their temperatures are at par. We exhibit these microcanonical features with a simple mechanical model of
interacting classical gas particles in a specially confined domain and subjected to gravitation. As predicted,
most of the gas particles are cooled and collect in the lowest part of the container, where the energy is carried
away by a few remaining particles.
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I. MOTIVATION

Gravity-dominated systems have a negative specific heat,
and in astrophysics this determines the stability and instabil-
ity of stars �1�. But how could one realize such a system in
the lab? Due to its instability, it can exist only in isolation,
not in contact with a heat reservoir. Correspondingly, the
specific heat in the canonical ensemble is always positive.
Negative specific heat can only occur in an isolated system,
which is described by the microcanonical ensemble where
the density in phase space is concentrated on the energy shell
�2,3�. Since it has been shown by Lebowitz and Lieb that for
Coulomb systems the microcanonical and canonical en-
sembles are equivalent �4�, there seems to be no hope that
one could devise such a gadget on earth. Nevertheless, it
turns out to be possible, at least in principle. A negative
specific heat, c�dE /dT�0, means that the temperature T is
not everywhere increasing with the energy E. As the tem-
perature is related to the entropy S by 1/T=�S /�E, a positive
specific heat means that S�E� is a concave function. Since S
is the logarithm of the volume of the energy shell, and since
a concave function never gets above any of its tangents, one
can characterize negative specific heat as follows: The en-
ergy shell expands more than exponentially with E. In
gravity-dominated systems this comes about due to the for-
mation of clusters, which causes the systems to heat up tre-
mendously. The lower the energy, the more the particles clus-
ter and the energy shell expands towards high momenta.
Since we want cooling, we do something different in this
paper and expand the configuration space with energy �1�.

Our model is similar to evaporation cooling discussed in
connection with Bose-Einstein condensation �5,6�. The con-
ceptual difference lies in the fact that we consider an equi-
librium system which, in addition, has a negative heat capac-
ity due to the special shape of the system boundary.

In Ref. �1� we studied a simple two-dimensional billiard
consisting of a single particle in a gravitational field, which

is elastically reflected from a specially designed “jumping
board” at the bottom. Assuming ergodicity, we could show
that the system has a negative heat capacity for a particle
energy exceeding a certain threshold. The models treated in
the present paper are slightly modified extensions of this
work, where we consider also N particles, which may ex-
change energy, but leave the total energy constant.

We consider N particles in two space dimensions confined
to the region −V�y��x�V�y��0, y�0. They experience a
constant force in the negative y direction, so we are working
with a Hamiltonian �in suitably chosen units specified below�

H = �
i=1

N

Hi = �
i=1

N

�pi
2 + yi� . �1�

The bottom of this domain is given by the function V�y�,
which, as shown below and in Ref. �1�, is most conveniently
given as a function of the vertical coordinate y.

II. CASE OF A SINGLE PARTICLE

To define V, we consider a single particle i, first. If d�i
=dxidyidpx,idpy,i denotes a volume element in the single-
particle phase space, the volume of the energy shell � and
the one-particle entropy Si are given by

��Ei� = eSi�Ei� =� d�i��Hi − Ei� = ��
0

Ei

dyV�y� . �2�

�Note that the definition of the entropy in Ref. �1� is based on
the volume under the energy shell, whereas here the volume
of the energy shell is used. For large N, both definitions are
known to give equivalent results.� To obtain a negative spe-
cific heat, we require ��Ei� to grow more than exponentially
with Ei. With the ansatz

eSi�Ei� = Ei
� exp�Ei

	�, � 
 1,	 � 1,

one obtains for Si�Ei�

Si�Ei� = � ln Ei + Ei
	, �3�

and the confining V�y� becomes
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V�y� �
1

�
� d

dEi
eSi�Ei�	

Ei=y
=

1

�
��y�−1 + 	y�+	−1�ey	

.

V�y� is positive, as required, and acts as a nonlinear jumping
board on which the particle is elastically reflected. The ther-
modynamic temperature is given by

T � �dSi�Ei�/dEi�−1 = Ei�� + 	Ei
	�−1, �4�

and for the specific heat we find

c � �dT/dEi�−1 =
�� + 	Ei

	�2

� − 	�	 − 1�Ei
	 . �5�

The two parameters � and 	 offer a wide choice of possible
jumping boards and, hence, realizations of thermodynamic
systems.

Let us consider a simple special case, �=1 and 	=2, for
which

V�y� = �−1�1 + 2y2�exp�y2� . �6�

A short trajectory is shown in Fig. 1, where negative x are
avoided by an elastic reflection at the y axis. The thermody-
namic temperature in this case is

T = Ei�1 + 2Ei
2�−1, �7�

and the specific heat becomes

c � dEi/dT = �1 + 2Ei
2�2�1 − 2Ei

2�−1, �8�

which is negative for Ei�1/
2, as desired. However, due to
our definition of the entropy, the kinetic temperature, which
is defined as the microcanonical average of the kinetic en-
ergy, Tkin��pi

2�, differs from the thermodynamic tempera-
ture T,

�pi
2� = e−Si�Ei� � d�ipi

2��pi
2 + yi − Ei�

= �e−Si�Ei��
0

Ei

dy�Ei − y�V�y�

= �1 − exp�− Ei
2��/2Ei. �9�

In Fig. 2 we compare the prediction of Eq. �9� �smooth line�
with computer simulation results �points�, which were ob-
tained from time averages of the kinetic energy of the par-
ticle. The excellent agreement supports our tacit assumption
that the system may be considered ergodic, at least in prin-
ciple. Also shown is the thermodynamic temperature T.

III. N ENERGETICALLY COUPLED PARTICLES

Next, we investigate whether also for N particles, the
Hamiltonian �1� leads to a region with negative heat capacity.
It turns out to be the case, since SiEi

2 for a single particle
is a sufficiently strong volume expansion of the energy shell
with energy Ei.

For the proof we use the following equivalences:

Positive heat capacity ⇔ E � S�E� is concave ⇔ S�E�

� S�E0� + S��E0��E − E0� ,

�10�

for every E0. The last inequality means that the graph of such
a concave function S�E� is below any of its tangents. We
have

eS�E� =� �
i=1

N

d�i���
j=1

N

Hj − E	
=� �

k=1

N

dEk���
j=1

N

Ej − E	�
i=1

N � d�i��Hi − Ei�

= �
0

�

�
k=1

N

dEk���
j=1

N

Ej − E	exp��
i=1

N

Si�Ei�	 . �11�

Now we use Si�Ei�=ln Ei+Ei
2, and introduce the integration

variables i=Ei /E, to arrive at

FIG. 1. �Color online� Jumping board according to Eq. �6� and
short trajectory for a particle with energy Ei=1.2. The gravitational
force points into the negative y direction. At the bottom, the particle
is elastically reflected from the x axis for 0�x�2/�, and from the
jumping board V for x�2/�. To avoid negative x, the y axis acts as
an elastic mirror.

FIG. 2. �Color online� Energy dependence of the kinetic tem-
perature �microcanonically averaged kinetic energy�, Tkin��p2�,
and of the thermodynamic temperature T for a single particle,
N=1. The points for �p2� are computer simulation results and the
smooth curves are the respective theoretical expressions.
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eS�E� = �
0

1

�
k=1

N

dk���
j=1

N

 j − 1	
�exp�E2�

i=1

N

i
2 + �2N − 1�ln E + �

i=1

N

ln i	

 eE2/N+�2N−1�ln EgN, �12�

where

gN = �
0

1

�
k=1

N

dkk���
j=1

N

 j − 1	
is a constant depending only on N. The inequality follows,
because �i=1

N i
2
1/N. If S�E� were concave, there should be

a bound according to Eq. �10�, eS�E��AeBE for all E
0,
where A ,B�R+. This contradicts the previous inequality
�12�. Thus, there should be a range of energies, for which the
specific heat remains negative even for large N.

To test this result on the computer, the particles are ener-
getically coupled such that their total energy is strictly con-
served and the system is microcanonical. The coupling is
achieved by selecting, with period �, N /2 particle pairs and
adding random velocities to the particle velocities of each
pair. Subsequently, the new velocities are renormalized such
that the pair energy is unchanged, which also conserves the
total energy. Typically, �=100 time units. In Fig. 3 we com-
pare the energy dependence of the kinetic temperature
Tkin���i=1

N pi
2 /N� for two, four, and eight particles to the ex-

act single-particle result �smooth line�, which is taken from
Fig. 2. From there we also infer that, whenever Tkin�E� has a
negative slope, also the heat capacity c= �dT�E� /dE�−1 is ex-
pected to be negative. In Fig. 3, energy intervals with a nega-
tive slope may still be observed for two and four particles,
although the energy regions where this happens are signifi-
cantly reduced. Numerically, regions with a negative slope
cease to exist for N
8. Most likely, this is due to a lack of
ergodicity for our simulation, since the particles do not have
enough time to explore the region very far out to the right on
top of the board.

In spite of this failure to numerically locate the region
with negative specific heat for more than four particles, we
still may deduce the gross behavior of the system. To evalu-
ate the integral Eq. �11� we have to look for the maximum of
the exponent �iSi�Ei�=�i�Ei

2+ln Ei� in the region 0�Ei,
�iEi=E. Were it not for the logarithm, the maximum would
be on the boundary: one Ei equal to E, and all the others
zero. The logarithm moves the location of the maximum in-
side this region to a point where all the derivatives vanish.
Taking care of �iEi=E with a Lagrange multiplier , we get
the condition 2Ei+1/Ei=. This equation has the solutions

Ei = �1 ± �1 − 8/2�1/2�/4.

The solution for the absolute maximum will have one big
member, say E1=�1+ �1−8/2�1/2� /4, and the others,
E2 , . . . ,EN=�1− �1−8/2�1/2� /4, are small.  is determined
by E=N�1− �1−8/2�1/2�. Thus, two “phases” emerge: An
“atmosphere” �particle 1� and a “condensate” �all the other
particles�. Both have the same temperature, Eq. �7�. Most
interesting is the case of a single high-energetic particle,
say particle 1, and the remaining particles in a dense
phase around the origin. Since the temperature goes as
Ei / �1+2Ei

2�, the temperature in both phases decreases with
increasing E. The emergence of two phases nicely illustrates
the instability connected with the negative specific heat. The
particles 2 to N give most of their energy to particle 1, which
carries it away.

A thermodynamic interpretation of this equilibrium runs
as follows: There are N particles with a negative heat capac-
ity for Ei�1/
2, and a positive heat capacity for Ei�1/
2.
At the beginning, the particle with the highest energy is ac-
tually the coldest, with most of its energy spent to get on the
jumping board. Therefore, it will tend to extract energy from
the other particles. By this mechanism, all the other particles
with Ei�1 lose energy and become hotter. This process con-
tinues until all the other particles have lost most of their
energy, such that Ei�1/
2, and their heat capacity becomes
normal and positive again. By giving off energy to the hottest
particle, which on average has the tendency to get as far
away from the origin as possible, the remaining N−1 par-
ticles cool off again. They gather �condense� in the potential
minimum near the origin, where they assume the same low
temperature.

To test these ideas by computer simulation, we consider a
planar system of N=1000 point particles, which move in a
constant gravitational force field of unit strength, pointing
into the direction of the negative y axis �see Fig. 4�. At the
bottom the particles are elastically reflected from the x axis,
for 0�x�V�0�, and from the jumping board V, for
x�V�0�, where V�0�=1/� is the intersection of V with the x
axis. For simplicity, the particles are also elastically reflected
from the positive y axis to ensure positive x for all time.

Initially, all particles are at the origin and have randomly
oriented momenta, such that all their energies are unity,
Ei�0�= px,i

2 �0�+ py,i
2 �0�=1; i=1, . . . ,N. Then, for the first 4000

time units, the system is evolved in time as an ideal gas
without any interaction between particles. This time is suffi-
cient by far to reach a stationary state, for which Fig. 4 is a

FIG. 3. �Color online� Caloric curves for N=1 �smooth line�,
N=2 �full green dots�, N=4 �blue stars�, and N=8 �pink triangles�
particles. The respective kinetic temperature, Tkin���i=1

N pi
2 /N�, is

plotted as a function of the energy per particle, E /N.
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typical snapshot. As is apparent from this figure, the maxi-
mum height the particles may reach is determined by their
energy, y�ymax=Ei, which is still the same for all particles.

Next, for times t�4000, interactions between particles
are switched on in such a way that the total energy is con-
stant and the system remains microcanonical. Periodically,
after every two time units, ten particle pairs are randomly
selected and the kinetic energies within each pair are inter-
changed, but keeping the original directions of their mo-
menta unchanged. With this modification, the system is
evolved for another 8000 time units. A snapshot of the par-
ticles at t=12 000 is shown in Fig. 5. For clarity, the same
spatial region as in Fig. 4 has been selected, although some
particles are much further to the right and/or higher up in
potential energy �respective y� to appear in this figure. For
example, the particle furthest to the right and on top of the
jumping board for this particular snapshot is located at
�5916,2.9�.

The qualitative behavior of the system with activated par-
ticle interactions may be inferred from this figure. The par-
ticles tend to “condense” near the center and are simulta-
neously cooled off as predicted, where the excess energy is
carried to the right by a small fraction of the particles. To
make this statement more explicit, we show in Fig. 6, how

the fraction N0�t� /N of particles in the central region
0�x�V�0� to the left of the vertical line in Fig. 5, changes
with time in our computer experiment. Furthermore, Fig. 7
depicts the time evolution of the instantaneous kinetic energy
per particle, K0�t� /N0�t�, for the particles in the central re-
gion 0�x�V�0�. Once the particle interactions are activated
at t=4000, one observes a sharp increase of the number of
particles N0�t� near the origin, and a simultaneous drop of the
kinetic energy per particle, K0�t� /N0�t� and, hence, the tem-
perature for the condensed particles. Incidentally, a plot of
the potential energy per particle as a function of time �not
shown� looks very similar to Fig. 7, which is a consequence
of equipartition.

Most of the cooling is achieved within about 1000 time
units. To convert to regular units, we note that our unit of
length L is given by L=�x0, where x0 is the distance,
where the jumping board crosses the x axis. The unit of mass
is twice the mass of a particle, and the unit of time is

L /g=
�x0 /g, where g is the gravitational acceleration. As-
suming L=1 �m and g�10 m s−2, the time unit is about
0.3 ms. Within 3 s, particles with a mass of 1.2�10−24 kg
�corresponding to C60 molecules� are cooled from 0.43 �K
to about 0.17 �K. The state reached, however, is not yet
stationary, but the process of condensation and cooling still
continues but with a progressively lower and lower rate. This
is also observed in Figs. 6 and 7.

At this stage a few remarks are in order:
�i� Thermodynamic instability means that the system can-

not coexist with a large heat bath. As a consequence, the

FIG. 4. Geometry of the jumping-board model. The points indi-
cate the location of 1000 ideal gas particles, all with unit energy,
which were evolved for a sufficiently long time to reach a stationary
state.

FIG. 5. Snapshot of the particle locations at a time t=12 000,
after the system has been evolved for 8000 time units by permitting
periodic kinetic-energy exchange for randomly selected particle
pairs as explained in the main text. Only a tiny part of the accessible
space is shown. The total energy is still a constant of the motion.
The vertical line, x=V�y=0�=0.319, marks the upper boundary of
the central region discussed in the main text.

FIG. 6. Time evolution of the ratio of particles, N0�t� /N, in the
central region 0�x�V�y=0�=1/�=0.319 to the left of the vertical
line of Fig. 5, for a system containing N=1000 particles. The par-
ticle interactions are switched on at t=4000.

FIG. 7. Time evolution of the kinetic energy per particle for all
particles in the central region 0�x�V�y=0�=1/�=0.319, which
is bounded by the vertical line in Fig. 5. The total number of par-
ticles N=1000.
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canonical distribution exp�−�H� is not normalizable. The
reason is that �0

V�y�dx¯ exp�y2�, and exp�−�H�exp�−y�
is powerless to render this integrable.

�ii� Inserting a mass, H= p2 /m+my, we note that the tra-
jectories satisfy the equivalence principle and are indepen-
dent of m, which only affects the time scale. In quantum
theory this does not hold any longer.

�iii� The thermal behavior can be looked at as a very
effective form of evaporation cooling, which has been most
extensively studied to generate ultracold gases in connection
with Bose-Einstein condensation �5�.

IV. COUPLED SYSTEMS WITH POSITIVE
AND NEGATIVE HEAT CAPACITIES

Next we consider two systems:
�1� A particle on a jumping board with a less-than-

exponential phase-space growth with energy, for which the
specific heat is positive �index p�,

eSp�Ep� = Ep
10,

Vp�y� =
10

�
y9,

cp = 10,

Tp =
Ep

10
,

Tkin,p =
Ep

11
, �13�

�To avoid the singular slope at the origin, the board is regu-
larized by a horizontal bottom for 0�x� �10/���0.2�9. This
does not affect the thermodynamic properties.�

�2� A particle on a board with a negative specific heat
�index n� for a large-enough energy, for which the equivalent
quantities are chosen as follows:

eSn�En� = Ene�9En
2/2�,

Vn�y� =
1

�
�1 − 9y2�e9y2/2,

cn =
�9En

2 + 1�2

�1 − 9En
2�

� 0 for En � 1/3,

Tn = En/�9En
2 + 1� ,

Tkin,n =
�1 − exp�− 9En

2/2��
9En

. �14�

For the same reasons as before, the thermodynamic tempera-
tures Tn and Tp differ slightly from the respective kinetic
temperatures Tkin,n and Tkin,p. For both models, these tem-
peratures are shown in Fig. 8 as a function of the respective

energies, where the points refer to computer simulation re-
sults. The scatter of points for the n system at large energies
En indicates the difficulties of achieving ergodicity, when the
particle is very far to the right on top of the board.

What happens when these systems are microcanonically
coupled such that the total energy is constant, E=Ep+En
=const �7�? Denoting the energy deviation from the mean,
E /2, by q,

Ep � �E/2� + q, En � �E/2� − q ,

we study the total entropy as a function of q,

S�q� = Sp��E/2� + q� + Sn��E/2� − q�

= 10 ln�1 + q� + 9
2 �1 − q�2 + ln�1 − q� .

In the middle panel of Fig. 9, we show this function for three
values of the average energy, E /2=1 �smooth red line�,
E /2=1.03 �dashed green line�, and E /2=0.97 �dotted violet
line�. The respective density of states ��q��eS�q� is shown
in the top panel, and the derivative dS�q� /dq in the bottom
panel of the same figure. Since dS�q� /dq is proportional to
�1/Tp�− �1/Tn�, its zeroes indicate equilibrium states for
which the temperatures of the two subsystems coincide.

For the most interesting case, E /2=1, there exist three
zeroes for dS�q� /dq: a metastable state for q=0 with a
�weak� local maximum of S�q�, an unstable equilibrium for
q=1/3, and a globally stable state with the highest entropy
maximum for q=2/3. The possibility of three zeroes was our
original motivation for the particular choice of jumping
boards for the n and p subsystems in Eqs. �13� and �14�. The
stability properties are most easily understood in connection
with Fig. 8: Depending on the fluctuation of the unstable
state q=1/3 �respectively, En=2/3, Ep=4/3�, the coupled
system may evolve to either of two equilibrium states:

�i� towards the �locally� stable state q=0 �respectively,
En=Ep=1�, whereby the p subsystem loses energy to the n
subsystem with an overall reduction of the temperature;

�ii� towards the �globally� stable state q=2/3 �respective
En=1/3, for which the specific heat of the n system diverges,
and Ep=5/3�. In this case, energy is transferred from the n
subsystem to the p subsystem, until the highest possible ther-

FIG. 8. �Color online� Dependence of the thermodynamic tem-
peratures T and the kinetic temperatures Tkin on the particle energy
E for the jumping-board models with positive �index p� and nega-
tive �index n� heat capacity. The smooth curves are theoretical pre-
dictions and the points are computer simulation results.
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modynamic equilibrium temperature is reached by the two
subsystems.

We have numerically verified the density of states for
E /2=1 in Fig. 10, where eS�q� �smooth line� is compared to a
histogram of q=En−1 constructed from the simulation. The
coupling between the n and p particles is achieved by peri-
odically �every 20 time units� adding random vectors
sampled from a Boltzmann distribution to the particle veloci-
ties, and normalizing the total energy to E=2. The agreement
in Fig. 10 is very satisfactory. However, for q�−0.6, that is,
for En�1.6, it becomes progressively difficult to achieve
ergodicity, and systematic deviations are observed �not
shown in Fig. 10�.

V. CONCLUDING REMARKS

Generally, negative specific heat is related to other prop-
erties of a system by the following theorem �8�:

Let F :Rn→R, with F�0�=0. Then, the three stability con-
ditions

�i� Extensivity �stability against implosion�:

F�z� = F�z�,  � R+,

�ii� Subadditivity �stability against explosion�:

F�z1 + z2� � F�z1� + F�z2� ,

�iii� Convexity �thermodynamic stability�:

F�z1 + �1 − �z2� � F�z1� + �1 − �F�z2� ,

are related such that each pair of conditions implies the third.
In terms of physics, F should be thought of the energy as

a function of entropy, particle number, and volume. By this
theorem, if one of the stability notions fails, another has to
fail too. In the model treated in this paper, �iii� fails, and it is
obvious that �i� fails too.

Usually, stability properties are discussed in the thermo-
dynamic limit. But since all of the quantities are well defined
for a few particles, it is permitted to apply thermodynamic
considerations to the system with a finite number of par-
ticles.
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FIG. 9. �Color online� Theoretical predictions for the energeti-
cally coupled jumping-board models, one with a positive �p� and
the other with a negative �n� heat capacity. Each subsystem contains
a single particle. Top: density of states, eS�q�; middle: S�q�; bottom:
dS�q� /dq. Here, q= �Ep−En� /2 denotes the fluctuating particle en-
ergies with respect to the constant mean energy E /2. E /2=1.03:
dashed green lines; E /2=1.00 smooth red lines; E /2=0.97 dotted
pink lines.

FIG. 10. �Color online� Comparison of the theoretical density of
states eS�q� with the histogram of q=En−1 of the energetically
coupled jumping-board models with positive and negative heat ca-
pacities. Each subsystem consists of a single particle, and E /2=1. A
single fit parameter is used for the height of the histogram.
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